首页> 外文OA文献 >Stochastic Stability for Time-Delay Markovian Jump Systems with Sector-Bounded Nonlinearities and More General Transition Probabilities
【2h】

Stochastic Stability for Time-Delay Markovian Jump Systems with Sector-Bounded Nonlinearities and More General Transition Probabilities

机译:具有界界非线性和更一般转移概率的时滞马尔可夫跳跃系统的随机稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs) with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.
机译:本文涉及具有界界非线性和更一般转移概率的时滞马尔可夫跳跃系统(MJS)的时滞相关随机稳定性。与先前的结果完全了解转移概率矩阵的结果不同,可以考虑使用更通用的转移概率矩阵,其中包括完全已知的元素,边界已知的元素和完全未知的元素。为了获得较少的保守准则,尽可能多地使用状态和转移概率信息来构造Lyapunov-Krasovskii泛函并进行稳定性分析。根据线性矩阵不等式导出了依赖于延迟的充分条件,以保证系统的稳定性。最后,通过数值算例证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号